## Agricultural Research Institute, Pusa Second Report on the Experiments carried out at Pusa to improve the Mulberry Silk Industry, compiled under the direction of the Imperial Entomologist BY M. N. DE, Sericultural Assistant, Pusa, CALCUTTA SUPERINTENDENT GOVERNMENT PRINTING, INDIA 1917 #### Agents for the Sale of Books Published by the Superintendent of Government Printing, India, Calcutta #### IN EUROPE. Coastable & Co., 10, Orange Street, Leicester Square, London, W.C. Kegan Paul, Trench, Trübner & Co., 68-74, Carter Lane, E.C., and 25, Museum Street, London, W.C. Bernard Quaritch, 11, Grafton Street, New Bond Street, London, W. P. S. King & Sons, 2 & 4, Great Smith Street, Westminster, London, S.W. H. S. King & Co., 65, Cornhill, E.C., and 9, Pall Mall, London, W. Grindlay & Co., 54, Parliament Street, London, S.W. Tuzac & Co., 46, Great Russell Street, London, W.C. W. Thacker & Co., 2, Creed Lane, London, E.C. T. Fisher Unwin, Ltd., 1, Adelphi Terrace, London, W.C. Wm. Wesley & Son, 28, Essex Street, Strand, London. B. H. Blackwell, 50 & 51, Broad Street, Oxford, Deightlon Bell & Co., Ltd., Cambridge. Oliver and Boyd, Tweeddale Court, Edinburgh. E. Ponsonby, Ltd., 116, Grafton Street, Dublia, Ernest Leroux, 28, Ree Bonaparte, Paris. Martinus Nijhoff, The Hague, Holland. #### IN INDIA AND CEYLON. Thacker, Spink & Co., Calcutta and Simla. Newman & Co., Calcutta. R. Cambray & Co., Calcutta. S. K. Lahiri & Co., Calcutta. B. Banerjee & Co., Calcutta. The Indian School Supply Depôt, 309, Bow Bazar Street, Calcutta, and 226, Nawabpur, Dacca. Butterworth & Co. (India), Ltd., Calcutta. Rai M. C. Sarcar Bahadur & Sons, 90/2-A, Harrison Road, Calcutta. The Weldon Library, 18-5, Chowringhee Road, Calcutta. Standard Literature Company, Ltd., Calcutta. Lai Chand & Sons, Calcutta. Higginbothams, Ltd., Madras. V. Kalyanarama Iyer & Co., Madras. G. A. Natesan & Co., Madras. S. Murthy & Co., Madras. S. Multily & Co., Madras. Thompson & Co., Madras. Temple & Co., Madras. P. R. Rama Iyer & Co., Madras. Vas & Co., Madras. E. M. Gopalakrishna Kone, Madura. Thacker & Co., Ltd., Bombay. A. J. Combridge & Co., Bombay. D. B. Taraporevala, Sons & Co., Bombay. Mrs. Radhabai Atmaram Sagoon, Bombay. Sunder Pandurang, Bombay. Gopal Narayan & Co., Bombay. Ram Chandra Govind & Son, Kalbadevi, Bombay. A. H. Wheeler & Co., Allahabad, Calcutta and Bombay. N. B. Mathur, Supdt., Nazir Kanun-i-Hind Press, Allahabad. Rai Sahih M. Gulab Singh & Sons, Mufid-i-Am Press, Lahore. Rama Krishna & Sons, Lahore. Supdt., American Baptist Mission Press, Rangoon. Manager, the " Hitavada," Nagpur, S. C. Talukdar, Proprietor, Students and Co., Cooch Behar. A. M. & J. Ferguson, Ceylon. Manager, Educational Book Depôts, Nagpur and Jubbulpore.\* Manager of the Imperial Book Depôt, 63, Chandney Chauk Street, Delhi.\* Manager, "The Agra Medical Hall and Cooperative Association, Ltd." (Successors to A. John & Co., Agra). Supdt., Basel Mission Book and Tract Depository, Mangalore. P. Varadachary & Co., Madras. H. Liddell, Printer, etc., 7, South Road, Allahabad.\* Ram Dayal Agarwala, 184, Katra, Allahabad.\* D. C. Anand & Sons, Peshawar.\* Manager, Newal Kishore Press, Lucknow.\* Agents for the sale of Legislative Department publications only. #### PREFACE. THIS Report contains results of experiments in continuation of some of those inserted in the First Report (Pusa Bulletin No. 48) as well as some new experiments which will throw some further light on the behaviour of the various races of silkworms under Indian climatic conditions. It is hoped that the results obtained may perhaps be useful to those who are practically engaged in silkworm rearing on a large scale. We have succeeded in establishing multivoltine hybrid races whose yield of silk is better than that of pure multivoltine races generally reared in Bengal; we are not yet quite sure whether these races will not degenerate later on but up till now they are giving satisfactory results. It must however be noted that the yield of silk is inferior to that of univoltine races reared in some foreign countries like Japan, China, Italy, France, etc. T. BAINBRIGGE FLETCHER, Imperial Entomologist. Second Report on the Experiments carried out at Pusa to improve the Mulberry Silk Industry, compiled under the direction of the Imperial Entomologist. [ Received for publication on the 14th March, 1917.] For the previous records of experiments with the hybrid races of the following Table, Table I, Bulletin No. 48, should be consulted. In this Table multivoltine races have been crossed with univoltine races to see whether a multivoltine hybrid race which will yield better cocoons than pure multivoltine races, can be established. TABLE I. | Raco and generation | Date of oviposition | Number<br>of univol-<br>true<br>layings | Number<br>of multi-<br>voltine<br>layings | Date of hatching | Date of<br>mounting | Number<br>of empty<br>cocoons<br>without<br>pupal skin<br>per 10<br>grammes | REMARKS | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------------------|--------------------------|-------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $\begin{array}{c} N_{\bf k} {\bf k} {\bf k} {\bf k} \\ {\bf v} \\ {\bf F}_{\bf k} {\bf n} {\bf k} \\ {\bf F}_{\bf k} {\bf n} {\bf k} \\ {\bf k} {\bf k} {\bf k} {\bf k} {\bf v} {\bf k} \\ {\bf v} {\bf k} \\ {\bf k} {\bf v} \\ {\bf k} k}$ | 16th August<br>1914 | 105 | <b>a</b> | 26th August<br>1914 | 14th September 1914 | 88 | For previous generations of this race, vide<br>Tablot, J. Bulleran No. 48.<br>About 4 per cent. of the eggs hatched<br>on 25th August 1914 and the rest on 14th | | Do. F. | 26th Septem-<br>ber 1914 | 16 | ເລ | 4th October<br>1914 | 5th November<br>1914 | 88 | All the 15 mother moths were healthy. | | Do. F. | 21st Novem-<br>ber 1914 | 15 | ng<br>Dig | 15th Decem-<br>ber 1914 | 12th Febru-<br>ary 1915 | 140 | About 60 eggs from some layings hatched naturally and the rest were eent to cold storage which hatched on 17th February 1915. All the three mother moths were handle. | | Do. F. | 28th Febru-<br>ary 1915 | lia | 00 | 15tk March<br>1915 | 10th April<br>1915 | 7.5 | One mother moth was attacked with facherie and the rest were healthy. | | Do. F. | 20th April<br>1915 | e9 | 12 | 29th April<br>1915 | 20th May<br>1915 | 70 | One female moth was pebrintzed and 22 were healthy. | | Do. F. | 29th May<br>1915 | ю | 18 | 6th June<br>1915 | 2#th June<br>1915 | 8 | All the 24 female moths were healthy. | | Do. F. | 6th July 1915 | 10 | 13 | 14th July<br>1915 | 2nd August<br>1915 | 8 | Four female moths were attacked with facherie and 9 were healthy. | | Ъо. Бо | 11th August<br>1915 | - | 12 | 19th August<br>1915 | 8th Septem-<br>ber 1915 | 85 | Twelve female moths were attacked with facherie and 29 were healthy. | | Do. Fig | 17th Septem-<br>ber 1915 | 6 | 8 | 25th Septem-<br>ber 1915 | 14th October<br>1915 | 8 | All the 41 female moths were healthy. | | Do. F11 | 24th October<br>1915 | | 8 | 2nd Novem-<br>ber 1915 | 1st December<br>1915 | 96 | All the 42 female moths were healthy. | | Do, F <sub>12</sub> | 28th Decem-<br>ber 1915 | 36 | 11 | 3rd February<br>1916 | 16th March<br>1916 | 125 | All the 11 female moths were healthy. | | | | | MUL | BERRY | SILE | IND | UST | R.Y | | | | | | 3 | |----------------------------------------------------------|------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------| | Eight female moths were pebrinized and 109 were healthy. | : | Only multivoltine layings were reared in this as well as in succeeding generations. | 1.5 per cent. of the female moths were<br>pobrinized. | All the 15 female moths examined, were healthy. | 6 per cent, of the founds moths were attacked with flacheric and the rest were healthy. | In all two mother moths were examined which were healthy. | The number of diseased moths was not recorded. | 80 per cent, of the female moths were attacked, with flacheric and the rest were healthy. | 35.5 per cent, of the female moths were attacked with flucheric and the rest were neather. | All the 16 female mottle which were ex- | All the 18 female moths that were examined were healthy. | All the 15 female motils that wore examined were healthy. | 2 per cent, female moths were pebringed<br>and 1.5 per cent, were attacked with<br>facheric and the rest were healthy. | | | ; | : | 67 | 22 | 160 | 72 | 06 | 5 | 70 | 6 | 80 | 130 | 130 | 100 | ; | | April 29th April 1916 | : | 19th September 1914 | 3rd Novem-<br>ber 1914 | 7th February<br>1915 | 10th April<br>1915 | 25th May<br>1915 | and July<br>1915 | 8th Angust<br>1915 | 14th Septem-<br>ber 1915 | 20th October<br>1915 | 21st Decem- ;<br>ber 1915 | 22nd March .<br>1916 | 4th May 1916 | 17th June 1916 | | 6th April 1916 | 17th May<br>1916 | 29th August<br>1914 | 8th October<br>1914 | 8th December<br>1914 | 15th March 10th<br>1915 1915 | 3rd May 1915 | 12th June | 20th July<br>1915 | 27th August 14th Septem-<br>1915 ber 1915 | 2nd October 20th October<br>1915 1915 | 11th Novem-<br>ber 1915 | 13th Februs 22nd March<br>ary 1916 1916 | 11th April 4th May 1916<br>1916 | 22nd May 17th June 1916<br>1916 | | : | 116 | alla | # | 159 | 12 | 02 | н | 2 | \$8¥ | 49 | L- | 1× | 19 | 888 | | , an | 00 | ī | 10 | ₹19 | ī | ii | - | 30 | 12 | 31<br>61 | 6 | 101 | 8 | = | | F., 28th March 1916 | 9th May 1916 | 21st August<br>1914 | 30th Septem-<br>ber 1914 | 20th Novem-<br>ber 1914 | 28th Febru-<br>ary 1915 | 24th April | 3rd June | 12th July<br>1915 | 19th August<br>1915 | 24th Septem-<br>ber 1915 | Fig. 31st October<br>1915 | 17th January<br>1916 | 2nd April | F., 14th May | | F.13 | 7<br>1 | F. | 74 | FI. | ¥ | ž. | PH. | 124 | ia. | E. | $\Gamma_{10}$ | | F., | F.3 | | Do. | Do. | Mutari | Do. | Do. | Da. | Do. | Ď. | Do. | Do. | Do. | Do. | Dσ. | Do. | bo. | TABLE I--concld. | | MUI | BER | RY S | SILK I | NDUSTR | ř | | | |-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------| | Вечляка | The results of rearing of the multi-voltine races are recorded in this as well as in succeeding generations. All the 6 female moths were healthy. | Of the 7 moths examined, 2 were attacked with flachere and the rest were healthy. | All the 6 female moths were healthy. | Of the 29 female moths examined, one was attacked with flacherie and the rest were healthy. | The univoltine eggs were reared in this generation and the eggs were sent to coult storage for bibernation. Of the 6 formal motils examined 2 were attacked with pelorine and the rest were healthy. | The heat was abnormal this year and many deed in the caterpillur stage and spun very poor coccons. Of the 8 female moths examined, I was pebrinized and the rest | were nearthy. | | | Number<br>of empty<br>cecoons<br>without<br>pupal skin<br>per 10<br>grammes | 82 | 65 | 22 | *Ĉ | : | : | • | | | Date of<br>mounting | 22nd June<br>1916 | 30th July<br>1915 | 4th Septem-<br>ber 1915 | 11th October<br>1915 . | 95h April<br>1916 | April 21st May 1916 | | <br> | | Date of<br>hatching | 1st June 1916 - 22nd<br>1916 | 16th July 30th<br>1915 1915 | 17th August 4th Septem-<br>1915 ber 1915 | 22nd Septem- 11th October<br>ber 1915 . 1915 . | 6th March 6th<br>1916 1916 | 25th April<br>1916 | 8th June<br>1916 | | | Number<br>of multi-<br>voltine<br>layings | OI | 61 | 9 | 9 | 61 | r¢. | m | | | Number<br>of univol-<br>tine<br>layings | n | 4 | - | Ilia | 2 | - | io. | | | Date o | 25th May<br>1915 | 2nd July<br>1915 | 8th August<br>1915 | 13th Septem-<br>ber 1915 | 20th October<br>1915 | 16th . April<br>1916 | 30th May<br>1916 | | | Race and generation | $\begin{aligned} & \text{French $\mathcal{C} \times \text{Nistarity}} & \left\{ \mathcal{C} \times \text{Mysore $\mathcal{C}$} \right\}_{\mathcal{V}} \\ & \text{Nistarity $\times \text{Hulion-Japanese}($\mathcal{C}$)} & \left\{ \mathcal{E}_{\mathbf{F}} \right\}_{\mathbf{F}_{\mathbf{F}}} \end{aligned}$ | Do. F, | Do. F. | Do. F. | Do. | Do. | Do. Fr | | TABLE II. | Remarks | Eggs of another race were supplied as who officined 24 who officined 24 seers of themroo naw shill from one meaned of cocoons of the same from the same of the same from the obtained 8 seers of raw silk. | Few eggs from some | of these layings<br>were univolitie. | | | | |--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|------------|----------------------------|--| | Price of raw silk<br>and waste | The price of man shift in the price of market in water in the shift | . : | ; | | : | | | Weight of raw silk | 2 seers 9 chattacia. Average danter of a former a fair f | : | : | ; | : | | | Weight of green cocoons | 40 seers 2 B.) | 1 lb.=300<br>raw cocoons | I lb.=400<br>raw cocoons | 1 Bes. 430 | 1 lb.=350 rs. raw cocoons. | | | Weight of leaves<br>red to the worms | S5 manufs of bush heaves. Local heaves. Local turn have been and therefore there is a manufactory about a manufactory and the waste of leaves. | : | : | : | : | | | Weight of eggs reared | 1 oz. | : | : | : | : | | | Number of<br>univoltine<br>layings | in an | lia. | nt | ië. | Tile. | | | Number of<br>multivoltine<br>layings | All the eggs<br>were not<br>reared. | * | 160 | 128 | 302 | | | | \$\frac{2}{5}\} | | | • | • | | | Bace | rench? } e2 this bu ctory as was very | , , , , , , , , , , , , , , , , , , , | ř. | ě | þ. | | | | | Madagascar⊊<br>×<br>French ∂ | Do. | Do. | Do, | | From the above table it will be seen that about 2 seers 9 chattacks of fine raw silk or 3 seers 12 chattacks of *khumroo* (coarse) raw silk were obtained from 40 seers of raw cocoons. The yield of cocoons from 1 oz. of eggs was 40 seers. Better cocoons have been obtained from the three hybrid races than from the pure multivoltine races generally reared in Bengal, Assam and Burma. But they have not yet turned purely multivoltine. It appears that it will not be possible to get all the layings multivoltine from a hybrid race; a few layings at least will be univoltine in almost all the generations but, taking the yield of silk into consideration, the few univoltine layings can be discarded and multivoltine layings can be reared profitably. It is hoped that these hybrid races will yield more silk than pure multivoltine ones and perhaps the proper time has now come to introduce them in the rearing districts of Bengal. It will be seen from the following table that if two pure multivoltine races are crossed, a few layings may become univoltine in some later generations. The hybrid univoltine eggs exhibit the characteristics of pure univoltine races but they hatch uniformly and regularly after a few months even if they are not sent to cold storage for hibernation; the natural local temperature is quite sufficient to make them hatch uniformly. It has been seen that, by eliminating all the yellow cocoons from each generation and keeping only the white ones for reproduction, it is easy to get all white cocoons from a mongrel race; but it is difficult to get all yellow cocoons after many generations if white ones are eliminated in each generation and yellow ones are kept for reproduction. The number of white and yellow cocoons in each generation of the mongrel races are recorded in the remarks column. It will be seen that mongrel races yield better silk than pure multivoltine races up to some generations; but that ultimately degeneration sets in and then there is practically no difference between the mongrel races and the pure races. We have seen that multivoltine Madagascar race and its crosses with the indigenous multivoltine races yield cocoons superior to those of the best indigenous multivoltine races and their crosses. When the Assam race (multivoltine) was crossed with the Chotopolu race all the layings were multivoltine even up to the 8th generation.\* It should be noted that, if the moths of the same multivoltine races, obtained from one place or from different localities, are crossed, the eggs remain multivoltine in all the generations. Hence it appears that the Assam and the Chotopolu races are one and the same. <sup>\*</sup> The " mongrel" race could not be continued after 5th generation on account of scarcity of icaves. TABLE III. | Bewares | For previous generations, vide Bulletin No. 48, previous generations, very printing of the first very balletin make were printing of the first very produced on the Yellow coopens and 10st white constraints were kept for reproduction in all the generations. | All the mother moths were healthy. The worms spun 272 yellow cocoons and 3 white ones. | Number of diseased moths not recorded. All the cocoons were yellow. | All the mother moths were healthy. | About 6.5 per cent. of the female moths were affected with facherie and the rest were healthy. The worms spun 1,923 yellow cocoons and 10 white ones. | About 9 per cent. of the mother moths were affected with pebrine and the rest were healthy. | 20 per cent. of the mother moths were affected with pebrine and the rest were healthy. All the cocoons were yellow. | All the mother moths were healthy. All the cocoons were yellow. | 4.5 per cent, of the mother moths were attacked with flacherie and the rest were healthy. The worms spun 801 yellow cocoons and 7 white ones. | All the 165 mother moths were healthy. All the 212 cocoons were yellow. | |-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------| | Number<br>of empty<br>coccons<br>without<br>pupal skin<br>per 10<br>grammes | 108 | 140 | 136 | 100 | 80 | 100 A | 07 | 90 | 110 | 165 A | | Date of<br>mounting | 21st Novem-<br>ber 1914 | 21st Febru-<br>ary 1915 | 17th April<br>1915 | 25th May<br>1915 | 28th June<br>1915 | 4th Angust<br>1915 | 9th Septem-<br>ber 1915 | 15th October<br>1915 | 30th Novem-<br>ber 1915 | 13th March<br>1916 | | Date of<br>hatching | 25th October<br>1914 | 9th January<br>1915 | 24th March<br>1915 | 4th May 1915 | 8th June 1915 | 16th July<br>1915 | 21st August<br>1915 | 26th Septem-<br>ber 1915 | 3rd November 1915 | 28th January<br>1916 | | Date of oviposition | 14th October<br>1914 | 11th December 1914 | 10th March<br>1915 | 26th April<br>1915 | 81st May<br>1915 | 8th July<br>1915 | 13th August<br>1915 | 18th Septem-<br>ber 1915 | 25th October<br>1915 | 26th December 1915 | | Number<br>of multi-<br>voltine<br>layings | 50 | 153 | 16 | 18 | 19 | 16 | 252 | <u>e</u> | 6 | 88 | | Kumber<br>of univol-<br>tine<br>layings | <b>4</b> | 123 | ī | ll d | 72 | ä | 41 | 2 | - | 2 | | | | • | • | • | | • | • | ٠ | • | | | | | | ٠ | • | | • | • | • | | . | | 9 | | • | | • | • | • | • | ٠ | • | • | | Race | E4 | F <sub>23</sub> | F. | F., | H | F | E | . se | F14 . | F3, . | | | ores } | ë. | ě | ě | Do. | ô | Ŕ | Do. | Do. | Do. | MULBERRY SILK INDUSTRY TABLE III—contd. | | | | l | | | | | | | | | |--------------------------|---------|------|---|---|-----------------------------------------|-------------------------------------------|--------------------------|--------------------------|-------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | # | Race | | | Number<br>of univol-<br>tine<br>layings | Number<br>of multi-<br>voltine<br>layings | Date of<br>oviposition | Date of<br>hatching | Date of<br>mounting | Number<br>of empty<br>cocous<br>without<br>pupal skin<br>per 10<br>grammes | REXARES | | Mysore⊊<br>X<br>Ni tari∂ | ٠. ا | | | | 75 | # | 23rd March<br>1916 | 2nd April<br>1916 | 24th April<br>1916 | : | 1.5 per cent. of the motiner moths were pobrinized and the rest were healthy. All the 805 coccous were value. | | D9. | i. | | | | 旧 | 140 | 5th May 1916 | 14th May<br>1916 | 7th June<br>1916 | : | •••• | | Assam ? Nistari ? | · | | i | • | Įįu | Ile | 2nd Decem-<br>ber 1914 | 8th February<br>1915 | 28th Febru-<br>ary 1915 | 120 | All the 15 mother moths were healthy. The worms spin 40 yallow coverons in all. Yellow coocons were kept for reproduction in all the generations and white ones were destroyed. | | o<br>A | [4 | | | | Ti . | 15 | 28th Febru-<br>ary 1915 | 15th March<br>1915 | 9th April<br>1915 | 06 | Two fornale moths were attacked with flactheric and coopera which we were kept for reproductive purgets the flact and 382 white encous. | | Do. | ·. | | | | ii | ផ | 19th April<br>1915 | 28th April<br>1915 | 18th May<br>1915 | 08 | All the 13 mother moths were healthy. The worms spun 144 white cocoons and 972 yellow cocoons. | | Do. | e. | | | | ā | 13 | 28th May<br>1916 | 6th June 1915 | 25th June<br>1915 | 38 | All the 24 female moths were healthy. The worms spun 585 yellow cocoons and 86 white cocoons. | | Do. | K | | | | 習 | 24 | 4th July<br>1915 | 12th July<br>1915 | 9th August | 80 | One female moth was attacked with flacherie and 8 were frealthy. The worms spun 256 yellow cocoons and 7 white ones. | | Do. | ·<br>E. | | | | F | 6 | 9th August<br>1915 | 18th August<br>1915 | 6th Septem-<br>ber 1915 | 80 | All the 12 mother moths were healthy. All the cocoons were yellow. | | Do. | F, | | | | # | = | 14th Septem-<br>ber 1915 | 22nd Septem-<br>ber 1915 | 11th October<br>1915 | ę | All the 44 female moths were healthy. All the 185 cocoons were yellow. | | Do. | e, | | | | 22 | 63<br>63 | 20th October<br>1915 | 29th October<br>1915 | 24th November 1915 | 92 | One mother moth was pebrinized and 10 were bealthy. | | | | | MLO. | DIM | 11 511 | W IVI | ,001 | IL E | | | , | |----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------| | All the 15 mother moths were healthy. All the cocours were yellow. Pure Chotopolu ruce spin yellow cocours and Assanfrace greenish white evocours. | All the 23 mother moths were leathly. The worms spun 5s white occors and 255 yellow ones. White cocooss in this m will as in morecaling general time were destroyed and yellow cocooss were kept for reproductive purposes. | One (emale moth was pedrinized andly were healthy. The worms spun 42 white cocoons and 380 yellow ones. | The number of diseased moths was not recorded. The worns spun 21 white and 137 yellow cocoons. | One female moth was attacked with flacherie and 16 were healthy. The worms spun 646 yellow cocoons and 56 white ones. | Seven female moths were attacked with flacheric, one was pebrinized and 25 were healthy. The worms spun 287 yellow and 0 white cocoons. | One female moth was attacked with pebrine and 4 were healthy. The worms span 287 yellow and 13 white eccours. | The race was discontinued as sufficient leaves were not available in winter. | For provious generations of this zero, ride Tiret Report, Table XI, page 30. In all two mother models were examined which were healthy. The worms print is yellow and one wheel healthy Xillow cocoons only were Kajar for reprediction and white message were destroyed in all the genera- | One mether moth was pebringed and 9 were healthy. The worms 8pun yellow encoons only. | All the 19 female moths were healthy. The worms span 670 yellow cocoons and 2 white ones. | Five female moths were attacked with flacherie and<br>14 were healthy. The worms span 145 yellow<br>cocoons in all. | | 144 | 135 | 185 | 104 | 100 | 105 | 86 | : | 140 | 86 | 105 | ຜູ້ | | 3rd March<br>1915 | 24th April<br>1915 | 27th May<br>1915 | 3rd July<br>1915 | 9th August<br>1915 | 16th Septem-<br>ber 1915 | 24th October<br>1915 | 8th January<br>1916 | 14th April | 22nd May<br>1915 | 28th June<br>1915 | 2nd August<br>1915 | | 24th Decem-<br>ber 1914 | 18th March<br>1915 | Ord May<br>1915 | 13th June<br>1915 | 20th July<br>1915 | 20th August<br>1915 | 4th October<br>1915 | 19th Novem-<br>ber 1915 | 17th March<br>1915 | 2nd May<br>1915 | sth June | 14th July<br>1915 | | 30th November 1914 | 3rd March<br>1915 | 2±th April<br>1915 | 5th June<br>1915 | 12th July<br>1915 | 19th August<br>1915 | 26th Septem-<br>ber 1915 | 6th Novem-<br>ber 1915 | 28th Febru-<br>ary 1915 | 23rd April<br>1915 | 31st May<br>1915 | 6th July<br>1915 | | 펺 | 15 | eg<br>eg | œ | 19 | 17 | | 13 | 0 | 61 | 92 | 61 | | II a | ii<br> | TR | Ħ | Ħ | Ē | lia | 10 | <b>a</b> | 1111 | nil. | lia | | • | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | , | | | | | | ía. | E | ٠. | Æ | E. | | ·. | · <u>a.</u> | | ь <b>.</b> | ₽.<br>• | | ~** | ) in | Şasa | 14 | P4 | μ, | 4 | 124 | ~~ | _ | | - | | Assam 3<br>×<br>Chotopola & | Do, | Do. | Do. | Do. | Do. | Do. | Do. | Nistari 2<br>Chotopolu 3 | Do. | Do. | Do. | TABLE III—concld. | Benaues | Six mother moths were attacked with flacherie and cocoons and state worms spun 692 yellow cocoons and 88 white ones. | One female moth was attacked with flacherie and 89 were healthy. The worms spun 610 yellow cocoons and 50 white ones. | The worms spun 561 yellow cocoons and 68 white ones. | All the 18 female moths were healthy. The worms spun 467 vellow cocons and 27 white one | One female moth was pebrinized and 12 were healthy. | The race was discontinued. | | |-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|--| | Number<br>of empty<br>cocoons<br>without<br>pupal skin<br>per 10<br>grammes | 06 | 95 | 110 | 160 | : | : | | | Date of<br>mounting | 8th Septem-<br>ber 1915 | 13th October<br>1915 | 1st Decem-<br>ber 1915 | 10th March<br>1916 | 25th April<br>1916 h | : | | | Date of<br>hatching | 20th August<br>1915 | 25th September 1915 | 3rd Novem-<br>ber 1915 | 29th January<br>1916 | 2nd April | : | | | Date of<br>oviposition | 10th August<br>1915 | 17th September 1915 | 22nd October<br>1915 | 27th December 1915 | 22nd March<br>1916 | : | | | Number<br>of multi-<br>voltine<br>layings | 18 | 8 | 9 | 98 | 18 | 100 | | | Number<br>of univol-<br>tine<br>layings | н | <b>a</b> | 7 | 68 | 7 | Ħ | | | | • | | | | | | | | | | • | | • | | • | | | Race | ~~ | F. | F <sub>23</sub> | F. | Fis | F. 2. | | | | Nistari ç<br>X<br>Chotopolu | Ďo. | ģ | Do. | Do. | Do. | | Mr. Kawahito, the Director of Aichiken Sericulture Experimental Station, Japan, has been reported to get an improvement in the cocoons of univoltine races by immersing the eggs in dilute hydrochloric acid. The following experiment was carried out here on a similar line with a multivoltine race and the result is shown below. TABLE IV. | Race | Treatment of eggs | Date of<br>oviposition | Date of hatching | Number of cocoons<br>per 10 grammes | |-----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------| | Assam ? } | Normal eggs | 26th Septem-<br>ber 1915 | 4th October 1915 | 13 raw, 80 pierced,<br>90 empty. | | Do. | Eggs dipped in din-<br>te hydrochloric acid<br>from 8-30 P.M. of<br>3rd October 1915<br>to 6 A.M. of 4th<br>October 1915 | Do. | Majority hatched on<br>4th October 1915<br>but a few on 5th<br>October 1915 | 15 raw, 85 pierced,<br>105 empty. | | Do. | Eggs dipped in dilu-<br>te hydrochloric acid<br>from 8-30 P.M. of<br>3rd October 1915<br>to 3 A.M. of 4th<br>October 1915 | Do. | Few eggs hatched<br>on 4th October<br>1915 but the majo-<br>rity hatched on 5th<br>October 1915 | 13 raw, 80 pierced,<br>90 empty. | Thus it is seen that better cocoons were not obtained by keeping eggs of multivoltine races in dilute hydrochloric acid. The following experiment was undertaken to see whether better cocoons can be obtained by increasing the number of feedings, the conditions of rearing remaining the same. TABLE V. | Race | Date of hatching | Date of<br>mounting | Number of<br>feedings<br>per day | Number of cocoons per 10 grammes | |-----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------| | Multivoltine hy-<br>brid race<br>Do.<br>Do.<br>Do.<br>Do. | 10th July 1915<br>10th July 1915<br>Do.<br>Do.<br>9th July 1915 | 30th July 1915<br>1st August 1915<br>Do.<br>Do.<br>28th July 1915 | 9<br>8<br>6<br>6 | 10 raw, 65 pierced, 70 empty. 9 raw, 60 pierced, 70 empty. 11 raw, 75 pierced, 80 empty. 12 raw, 70 pierced, 80 empty. 10 raw, 65 pierced, 75 empty. | It is seen that the yield of silk can be increased by increasing the number of feedings but the advantage obtained is not proportionate to the extra trouble and cost required for the purpose. The following experiment was undertaken to find out which variety of mulberry gives the most satisfactory results in the yield and other qualities of silk and the percentage of diseases in the mother moths. The following varieties of mulberry were used in this experiment:- - 1. Morus indica, male. - 2. Morus indica, female. - 2. 1407 86 110000, 1000 - 3. Bengal bush. - 4. Philippine variety. - 5. Japanese variety. - 6. Italian variety. ## TABLE VI. | Percentage<br>of clasti-<br>city for<br>the same | 88.8 | 14.66 | 13.40 | 15.20 | 1974 | 12.10 | | | |--------------------------------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Average<br>tenacity<br>for the<br>length of<br>450 metres | 39-3 | 33.0 | 32.4 | 35.4 | 38.7 | 9-68 | | | | Average denier of the flaments for the length of 450 metres | 9-50 | 9-75 | 90.6 | 00:6 | 00-6 | 7-50 | | and the street, th | | Average denier of one filament for the length of 450 metres | 1.75 | 3.87 | 1.87 | 1.64 | 1.78 | 1.58 | hadrankallangur | | | Average length of thread in one cocoon in metres | 371-43 | 364-64 | 00.652 | 413.51 | 967.60 | 330.00 | | | | Percentage Percentage<br>of pebri- of healthy<br>meths moths | E | 50 | 29 | 55 | 9. | 60 | | | | Percentage<br>of pebri-<br>nized<br>moths | 65 | 30 | ŝ | £ | 8 | 14 | | | | Number of<br>eucoons per<br>10 grammes | 13 raw, 75 pier-<br>ced, 105 empty | 12 raw, 75 pier-<br>ced, 100 empty | 13 raw, 75 pier-<br>ced,<br>cmpty | 11 raw, 80 pier-<br>ced,<br>empty | 10 raw, 70 pier-<br>ced, 85 empty | 14 raw, 100<br>piercad, 135<br>empty | | | | Date of<br>maturity | 1st April<br>1916 | · OO | 4th April 1916 | 3rd April | Do. | Do. | | | | Date of<br>hatching | 3rd March<br>1916 | 4th March<br>1916 | 5th March<br>1916 | Do. | Do. | | | | | Variety of mul-<br>berry leaves<br>served to the<br>worms | Morus indica,<br>male medium<br>tree | Morus indica,<br>temale medium<br>tree | Morus alba var.<br>indica, Bengal<br>bush | Morus aiba var.<br>philippinensis;<br>tree | Morus alba var.<br>japanica, treo | Morus alba of<br>Italy, tree | | | | Race | Boropolu ? | Do. | å | ò | Do. | Đỏ | | | Taking the yield of silk and other things into consideration Japanese mulberry stands first, Philippine variety and Morus indica, female, stand second; Bengal bush and Morus indica, male, stand third and Italian from Japanese and Philippine varieties earlier in the spring, so that the spinning of cocoons may begin before the advent of the hot season, The Japanese variety yields many fruits but the Philippine variety yields very few, about 90 per cent. of the flowers being males. There is practically no difference between the leaves of male and female varieties of Morus indica though the latter gave a little better result than the former; the female variety yields many fruits but the male one does not bear a single fruit, all the flowers being males. The leaves of the Italian variety are very big and hard and not suitable for feeding the worms. The Bengal bush variety does not bear fruits as it is not allowed to grow more than 4 or 5 feet high. This variety would no doubt yield better results if it is allowed to grow into a big tree. The leaves of the six varieties of mulberry were analysed in the Chemical Laboratory of Pusa with the following results:— TABLE VII. | | Morus<br>indica,<br>inale<br>medium<br>tree | indica,<br>female | Morus<br>alba var.<br>indica,<br>Bengal<br>bush | Morus<br>alba var.<br>philip-<br>pinensis | Morns<br>alba var,<br>japanica | Moras<br>alba of<br>Ita y | |-----------------------------------|---------------------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------|--------------------------------|-------------------------------| | | Per cent. | Per cent. | Per cent. | Per cent. | . Per cent. | Per cent. | | Moisture | 68.82 | 69:30 | 65:69 | 66:63 | 64.46 | 69.02 | | Dry matter | 31:18 | 30.70 | 34.31 | 33'37 | 35:54 | 30.98 | | | Per cent.<br>on dry<br>matter | | Organic matter , , . | 88:39 | 85 93 | 84:10 | 86:57 | 86.66 | 90:50 | | Fat, resinous substances, etc | 3.86 | 8:75 | 4:03 | 3.43 | 5:116 | 3:40 | | Pure protein | 24.40 | 23.93 | 26-54 | 17-81 | 20.49 | 16:09 | | Crude protein | 27-05 | 25.85 | 28.82 | 19-68 | 21.88 | 16:50 | | Nitrogenous non-albuminous | 2.65 | 1.93 | 2.28 | 1.87 | 1.30 | 0.81 | | substance<br>Soluble carbohydrate | 50.41 | 50-63- | 46.90 | 56-54 | 52-96 | 62.28 | | Woody fibre | 7:72 | 7:64 | 7.32 | 8-79 | 8-15 | 8 73 | | Ash | 13:61 | 14.07 | 15-21 | 13.43 | 13.34 | 9:50 | One of the dangerous diseases of silkworms is pebrine which is hereditary and contagious. It is essential that the eggs, laid by a mother moth which is attacked with pebrine, should be destroyed and only those laid by healthy moths should be used for reproductive purposes. The contagious and hereditary nature of the disease is apparent from the following experiments carried out at Pusa in August 1911. All the worms used in the experiment were kept in the same room and the conditions of rearing were the same as are generally followed by the cultivators. The average temperature and moisture-content of the room from the date of hatching to that of maturity were as under. | | | | Date | | | | | | Average dry<br>temperature of<br>the rearing room | Average humidit<br>of the air of the<br>rearing room | |---------------|-----------------------------------------|---------|------|----|---|-----|---|-----|---------------------------------------------------|------------------------------------------------------| | | | | | | | • | | | ° F. | Per cent. | | 15th <i>A</i> | August | 1911 | | | | | | | 82.5 | 88.0 | | 16th | ,, | ,, | | | | | | | 82.5 | 91.5 | | 17th | ,, | ,, | | | | | | | 84.5 | 85.5 | | 18th | ,, | ,, | | | | | | | 82.5 | 89.5 | | 19th | ,, | ,, | | | | | | | 81.5 | 90.5 | | 20th | ,, | ,, | | | | | | | 80.8 | 93.5 | | 21st | ,, | ,, | | | | | | | 81.0 | 93.0 | | 22nd | ,, | " | | | | | | | 80.5 | 91.0 | | 23rd | 29 | " | | | | | | ÷ | 79.5 | 91.5 | | 24th | ) · | " | | | | | | | 81.5 | 91.5 | | 25th | ** | ,, | | | | | | · · | 82.5 | 87.5 | | 26th | ,, | ,, | Ċ | | | · · | | ÷ | 82.5 | 88.0 | | 27th | " | " | Ċ | · | | • | ÷ | Ċ | 81.5 | 93.0 | | 28th | " | " | • | · | • | Ċ | ÷ | ÷ | 82.5 | 88.5 | | 29th | ,, | " | : | • | | Ċ | Ċ | ÷ | 83-5 | 83.5 | | 30th | " | " | • | | | Ċ | | ÷ | 82.5 | 86.5 | | 31st | ,, | ,, | | | Ċ | • | Ċ | ÷ | 82.5 | 88-5 | | | Senten | ıber 19 | 911 | Ť. | Ċ | • | ÷ | : | 84.5 | 85 0 | | 2nd | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | • | : | ÷ | 84.5 | 83.5 | | 3rd | ,, | , | | | · | • | ÷ | : | 83.0 | 85.5 | | 4th | " | 7: | | • | · | · | ÷ | ÷ | 83.5 | 85 0 | | 5th | ,, | , | | | | Ċ | ÷ | ÷ | 83.5 | 85.5 | | 6th | " | | | | | Ċ | : | : | 83.0 | 88.0 | | 7th | " | " | | Ċ | | · | | : | 81.5 | 91.5 | | 8th | ,, | | | Ť | ÷ | | • | Ċ | 79.5 | 92.5 | | 9th | " | ,, | | • | • | • | • | : | 82.5 | 86.5 | | | ,, | ,, | | | | • | | | | | In this experiment (1) 10 healthy and 2 pebrinized layings, (2) 10 healthy and 3 pebrinized layings, (3) 10 healthy and 7½ pebrinized layings, (4) 10 healthy and 5 pebrinized layings, (5) 10 healthy and 10 pebrinized layings, (6) 10 healthy layings, (7) 10 healthy and 2½ pebrinized layings, (8) 10 healthy and one pebrinized layings, (9) 10 healthy and ½ pebrinized layings, (10) 4 pebrinized layings and 10 healthy ones and (11) 10 pebrinized layings were reared separately in the same room in 11 consignments and their results are recorded in Table VIII. TABLE VIII. | | | | | ш | .,,, | KS D | u. | . 0. | LLIA. | I I I | 0,5 | 1 11 | 1 | | | | | 1 | Э | | |--------------------------------------|-----------|---------------------------------------------------------------|---------|-------|-------|-------|---------------|-------------------------------------------------------|------------------------------------------------------------|-------|-------|-------|-----------------------------------------------------|---|------|------|---|---|---|---| | REMARK? | | Healthy and diseased worms were<br>mixed and reared together, | Do. | Do. | Do. | å | D0, | Healthy eggs only were reared in<br>this consignment. | Healthy and diseased worms were mixed and reared together. | Do. | Do. | Do. | Only diseased eggs were reared in this consignment. | | | | | | | | | Percentage<br>of hearthy<br>moths | | 32.2 | 4.0 | lia. | 0.7 | | 14.0 | 25.0 | 12:0 | 2.2 | 32.5 | 20.0 | ľ | | <br> | <br> | | | | | | Percentage of<br>pebrinized<br>moths | | 67.5 | 0.96 | 100.0 | 080 | 2 | 96.0 | 78-0 | 0.88 | 94.2 | 67-5 | 30.0 | 100.0 | | <br> | | | • | | | | Weight of<br>cocoons<br>obtained | Chattacks | ę | į. | 134 | | • | of the second | 01 | 18 | 113 | 11 | 125 | : | | | <br> | | | | | | Number of<br>cocoons<br>obtained | | 504 | 740 | 1 163 | 50247 | 900 | 507 | 921 | 1,683 | 1,145 | 1,021 | 1,058 | 32 | | | | | | | | | Number of<br>worms<br>reared | | 3,740 | 2.5 | 95 | 201,0 | 4,475 | 5,850 | 3,197 | 3,787 | 3.373 | 3.237 | 4.200 | 2,753 | | <br> | <br> | | • | | | | Number of<br>pebrinized<br>layings | | 61 | • | , i | æi i | | 10 | Pin I | 57 | | ~ | | <br>91 | - | | | | | | | | Number of<br>healthy<br>layings | | 10 | • | 2 : | 2 | 01 | 91 | 10 | 10 | 2 | | - | | | <br> | <br> | | _ | | | | | | • | | | • | • | ٠ | • | • | | • | • | | | | | | | | ١ | | | | • | | | • | • | • | • | • | | • | | | | | | | | | | | Race | | ٠, | e of Fa | Do. | Do | Do. | Do | Do | Do. | å | · · | 21 : | | 3 | | | | | | | | , m | | I Metari ? | | 61 | 3 | | 50 | | 1 | | | ÷ ( | 0. [ | : | | | c | 2 | | | MULBERRY SILK INDUSTRY It has been seen that the best results were obtained from 10 healthy layings and the worst from the 10 layings laid by diseased moths. From the 10 healthy layings 921 cocoons were obtained, whereas, from the 10 diseased layings only 35 cocoons were obtained and from the consignment in which 10 healthy and 10 diseased layings were reared only 507 cocoons were obtained. The greater the number of diseased layings reared with the 10 healthy lavings, the less were the number of cocoons obtained and the percentage of diseased moths in each consignment was more or less in proportion to the number of diseased layings reared with the 10 healthy layings. It should be noted in this connection that all the eggs laid by a pebrinized moth do not contain pebrine germs. Pebrine spores can be seen in some of the eggs and these multiply with the growth of the embryos but the majority of the eggs are quite healthy. Pebrine spores cannot be seen in the eggs laid by a moth whose generative organ is not attacked with pebrine; if the moth is attacked with pebrine in other parts the germs of the disease may be visible on the egg-shells but these can be washed off with water. Good cocoons and disease-free moths can be obtained from a pebrinized laying if the worms are reared separately and if special care is taken. On the other hand, bad cocoons and diseased moths are obtained from a healthy laying if the worms are not properly attended to and if the temperature and moisture-content in the air are high. A rearing of the above race was commenced at the same time with healthy layings in a separate room on a large scale. The crop was a successful one; about 94 per cent. of the hatched worms spun cocoons and only 4 per cent. of the female moths were pebrinized. It has been shown in the First Report that univoltine races are more susceptible to the disease than multivoltine races in a climate like that of Pusa. In Assam where mulberry silkworm is reared only on a small scale and in the households of cultivators, diseased eggs are not eliminated by the microscopical examination of the moths and the percentage of this disease in moths is about 3 to 4. The room in which the worms are reared is kept very neat and clean and a fire is moreover kept in the rearing room. On account of the cleanliness and the smoke of the fire the germs of the pebrine are kept in check. In Bengal about 50 per cent. pebrine is seen in moths of those localities where microscopical examination is not practised and the worms of many rearers perish on account of this disease. In Japan and Europe where microscopical examination of the moths is undertaken pebrine is present in about 4 to 5 per cent, of the moths. It has been noticed that the disease is more prevalent during the months of May to October than from November to April. Moisture and heat appear to help the rapid multiplication of pebrine. A high temperature and moisture-content in the air are not suitable for the healthy development of the worms especially when they are meant to be used for reproductive purposes though these conditions cause a rapid growth of the worms. Pebrine spores may enter into the system of the worms with the leaves eaten by them. Worms may also contract the disease through wounds on their bodies. It is advisable to keep the mother moths in a box for about four hours only, isolated in paper bags on the second day after oviposition, the temperature of which should be about 180°F, and crush them well in separate pestles and mortars on the 6th or 7th day after oviposition for the Pasteur system of examination. The bags containing the moths can also be dried by exposing them in the sun. The number of the bag containing a moth should correspond with the number of the laying oviposited by it so that the eggs laid by each moth can be ascertained and those laid by diseased moths can be destroyed after examination. There is another disease of silkworms called flacherie which, according to some, is hereditary but according to others not so. During the rains when the temperature is high and the air is wet many moths are attacked with flacherie though they oviposit the normal number of eggs. The following experiment was undertaken to find out whether good crops could be obtained from eggs laid by moths attacked with flacherie and the results are compared with the cocoons obtained from eggs laid by healthy moths of the same races. All the worms were reared in the same room and under similar conditions. # TABLE IX. | Race | Discased or healthy eggs | Date of<br>hatching | Date of<br>maturity | Rearing<br>whether<br>successful | Number of cocoons<br>in 10 grammes | Percent-<br>age of<br>moths<br>attacked<br>with | age of moths attacked with pebrine | Percent-<br>age of<br>healthy<br>moths | REMARKS | |-----------------------------|----------------------------------------------------|--------------------------------------|--------------------------------|----------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------------------------------------------------| | Mysore 2 | Healthy | 4th July<br>1914 | 23rd July | Successful | 13 raw and 95 empty | 29 | * | 16 | The eggs were disinfected with 2 per ceut. CUSO, | | Do. | Eggs laid by moths<br>attacked with fla-<br>cherie | Вэ. | O | Do. | 10 raw and 86 empty | 25 | * | 7.1 | solution. | | Mysore ? | Healthy | 9th August | 27th August | Do. | 12 rawand 96 empty | 6.6 | 6.3 | 84.2 | The eggs were disinfected | | Nistari¢ J Fas<br>Do. | Eggs laid by moths<br>attacked with fla-<br>cherie | 1914<br>10th August<br>1914 | 1914<br>28th August<br>1914 | ģ | 12 raw and 98 empty | 89 | 9 | 98 | | | Mysore? ) Xistarid J.F | . Do. | 21st August | 9th Septem-<br>ber 1915 | Do. | 12 raw and 90 empty | 80 | nin | 9.5 | | | Do | Healthy | Do. | Do. | Do. | 10 raw and 70 ompty | 08 | liu | 80 | The eggs were disinfected with CUSO, solution. | | Chotopou | Eggs laid by moths<br>attacked with fla- | 21st Septem-<br>ber 1915 | 12th October<br>1915 | Do. | 12 raw and 95 empty | 14 | lia | 83 | | | р | cherio<br>Healthy | 91 | 13th October | Do. | 13 raw and 105 | # | pri | 96 | The eggs were disinfected | | Nistari | Do | ber 1916<br>28th Septem- | 1915<br>18th October | ģ | arpty<br>12 raw and 90 empty | iji | nil | 100 | 100000000000000000000000000000000000000 | | Do | Eggs laid by moths<br>attacked with fla- | ber 1915<br>30th Septem-<br>ber 1916 | 1915<br>20th October<br>1915 | è. | 13 raw and 100<br>empty | ם | ij | 100 | | | Hybrid race, 8th generation | cherie<br>Do | Z3rd Septem-<br>ber 1915 | 13th October<br>1915 | Ğ. | 9 raw and 70 empty | ,5 | ii. | 96 | The grandmothers of this consignment were also attacked with facherie. | | Do | Healthy eggs | 24th Septem- | - | : | 8 raw and 65 empty | 9 | lig. | 94 | The grandmothers of this | | Hybrid race, 9th generation | Eggs laid by moths<br>attacked with fla-<br>cherie | 2nd Novem-<br>ber 1915 | 1915<br>1st Decem-<br>ber 1915 | Do. | 11 raw and 80 empty | ī | Įų. | 100 | The grandmothers and great grandmothers of this lot were attacked with facheric. | | . Do. | Healthy eggs | 31st October<br>1915 | 28th November 1915 | Do. | 10 raw and 72 empty | E E | nit | 100 | The grandmothers and great grandmothers of this lot were healthy. | Hence we can conclude that the eggs, laid by moths which were attacked with flacherie, can be safely kept for industrial purposes though in some cases the cocoons are a little inferior to those obtained from the eggs laid by healthy moths. In the First Report it has been shown that the temperature suitable for the uniform hatching of univoltine eggs is about 30°-40°F. and that it is quite possible to preserve the eggs in Hill Stations such as Shillong, Simla, Naini Tal, Darjeeling, etc., where the natural temperature in winter (from October to February) varies from 60°-30° F. and that the duration of cold storage should be about four months (vide Bulletin No. 48, pages 1, 2 and 23). The following experiment was undertaken to find out whether it is possible to shorten the duration of cold storage by increasing the intensity of cold and to study the effect of intense cold on the embryos. We are indebted to the Director of the King Institute of Preventive Medicine, Guindy, Madras, for keeping the eggs in his cool rooms.\* <sup>\*</sup> For temperature of cool and cooler rooms, see Table XII. TABLE X. | Race | Date of<br>oviposition | Number<br>of<br>layings | Temperature of<br>the cold storage<br>and treatment<br>there | Duration of hatching | Number of<br>worms<br>hatched | Hatching<br>whether<br>regular | REMARKS | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 24th April 1915 | 37• | 11°-30° F. from<br>18th June 1915<br>to 5th Novem-<br>ber 1915 | 26th February 1916<br>to 15th May 1916 | 5,113 | Very irregular . | Few hatched on 4th June 1915.<br>The embryos of some were<br>affected and some eggs scomed<br>to be in good condition but<br>they were injured in the cold | | French acclimatized eggs . | 26th April 1915 | 50 | De. | 18th February 1916 | 85 | Ď. | storage and failed to hatch. The embryos of some were | | Chinese acclimatized eggs | 28th April 1915 | 30 | Do. | to 12th May 1916<br>21st March 1916 to<br>27th April 1916 | 15 | °, | injured. The embryos of many were in- jured. | | | 18th April 1915 | ន | od | 2nd February 1916<br>to 20th May 1916 | : | : | Few hatched on 4th June 1916.<br>The embryos of many were<br>injured. | | • | 18th April 1915 | 13 | Do | 28th January 1916<br>to 15th May 1916 | 1,453 | Irregular | Few hatched on 4th June 1916.<br>The embryos of some were | | | 15th April 1915 | 4 | Do. | 28th January 1916<br>to 30th March 1916 | 860 | Do. | injured. The embryos of few were in- jured. | | ₹ }<br>♂ } F <sub>2</sub> · · · | 17th May 1915 | œ | Do. | 6th February 1916<br>to 8th April 1916 | 617 | Do. | The embryos of some were in-<br>jured. | | | 28th April 1915 | 22 | Do. | 18th February 1916<br>to 22nd May 1916 | 271 | Do. | The embryos of many were injured. | | French 2 × Nistan 3 6 5<br>Mysors 2 Ft. | 19th May 1916 | 8 | Do. | 2nd Pebruary 1916<br>to 27th April 1916 | 8 | Do. | The embryos of some were injured. | | $\left\{\begin{array}{c} \mathbf{X} \\ \mathbf{Mysore} \\ \mathbf{Mysore} \\ \mathbf{Mysore} \\ \mathbf{Mysore} \\ \mathbf{Mysore} \\ \mathbf{X} \\ \mathbf{Mysore} \\ \mathbf{X} $ | Do | 80 | Do. | 27th January 1916<br>to 23rd April 1916 | 651 | Do. | Q | | French 3 | 9th April 1915 . | = | Do. | 26th January 1916<br>to 17th March 1916 | 1,822 | Do. | The embryos of few were injured and some eggs dried | | | . 1 July 1915 | 1 oz. or<br>40,000 | 11°-30° F. from<br>1st November<br>1915 to 3rd<br>March 1916 | 25th March 1916 to<br>25th April 1916 | 429 | Do. | up in the cold storage, were injusted, so of eggs of the same lot were sent to Mukesar for cold storage and kept decade 1918. It includes 1918. All the eggs hatched regularly in the days. | . One laying contains about 350 oges. Some of the eggs of the above races were kept in a dark room of the Pusa Silk house from October to March 1915 and they began to hatch non-uniformly from 26th January 1916. Univoltine eggs of 9 different varieties were divided in five parts and kept in five bags. Each of these bags was treated in cold storage in the following way:— - No. 1 bag kept in the cooler room for one month. - No. 2 bag kept in the cooler room for two months. - No. 3 bag kept in the cool room for 15 days, shifted to the cooler room and kept there for 15 days and shifted back to cool room and kept there for 15 days and then taken out for incubating. - No. 4 bag kept in the cool room for 15 days, shifted to the cooler room and kept there for 32 days and shifted back to cool room and kept there for 15 days and then taken out for incubating. No. 5 bag kept in the cool room for 3 months. The results are recorded in the following Table:— TAB | Race | Date of<br>oviposition | | AG No. 1 REPT <br>20TH DECEMBER<br>UT ON 21ST JA<br>INCUBA | 1915 A<br>NUARY | ND TAKEN | | I No. 2 REPT 12<br>FII DECEMBER 1<br>T ON 21ST FEBI<br>INCUBATI | UARY ' | | |---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|----------------------------|----------------------------------------------------------------------| | | A CONTRACTOR OF THE | Number of layings | Duration of batching | Number of hatched<br>worms | Remarks | Number of Jayings | Duration of hatching | Number of hatched<br>worms | REMARKS | | French | 2nd April<br>1915 | 1/2 | 22nd Feb-<br>ruary 1916<br>to 15th May<br>1916 | 16 | The embryos<br>of many eggs<br>were injured | ł | 21st Feb-<br>ruary 1916<br>to 24th Feb-<br>ruary 1916 | 5 | The embr<br>were injugand there;<br>the wo<br>could<br>come out | | Chinese | 28th April<br>1915 | 3 | 21st Febru-<br>ary 1916 to<br>3rd April<br>1916 | 191 | Do. | 6 | 21st March<br>1916 to 24th<br>April 1916 | 168 | Many embr<br>were injugand the<br>failed<br>hatch | | Boropolu | 31st March<br>1915 | 2 | 18th Febru-<br>ary 1916 to<br>12th March<br>1916 | 444 | Few eggs did<br>not hatch<br>and seemed<br>to have been<br>injured | 3 | 12th March<br>1916 to 30th<br>March 1916 | 753 | Some embry<br>were injut<br>and therein<br>the eggs rou<br>not hatch | | Chinese ? } Krench & Fr | 28th April<br>1915 | 1 | 12th March<br>1916 to 17th<br>April 1916 | 31 | Many eggs<br>were injured | 1 | 27th March<br>1916 | 2 | The rest<br>the embry<br>dried up | | Boropolu ? } × French & F <sub>1</sub> | 23rd April<br>1915 | 1 | 18th Febru-<br>ary 1916 to<br>23rd March<br>1916 | 262 | Few eggs<br>were injured | 1 | 21st 3 March<br>1916 to 23rd<br>April 1916 | 72 | D0. | | Mysore? \ Nistari \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 3rd December 1915 | 4 | 18th Febru-<br>ary 1916 to<br>17th March<br>1916 | 500 | Some eggs did<br>not hatch<br>and some<br>embryos were<br>injured | 3 | 12th March<br>1916 to 27th<br>March 1916 | 1178 | Very few (<br>bryos we<br>injured | | Italian 2 Japanese 2 } X Nistari 2 | 10th December 1#15 | 3 | 14th March<br>1916 to 16th<br>April 1916 | 296 | Many em-<br>bryos were<br>injured and<br>failed to<br>hatch | 3 | 3rd April<br>1916 to 11th<br>April 1916 | 16 | Most of<br>embryon w<br>injured | | Hybrid univoltine eggs | 24th Octo-<br>ber 1915 | 2 | 18th February 1916 to 3rd April 1916 | £ | Few embryos<br>were injured<br>and failed<br>to hatch | 2 | 17th March<br>1916 to 18th<br>April 1916 | 235 | Some embr.<br>were injun | | Eri eggš | 10thDecem-<br>ber 1915 | 5 | | nil | All the em-<br>bryos were<br>injured and<br>failed to<br>hatch | 5 | •• | nil | All the to bryos winjured | | 913<br>911 | IBER 1915, S<br>ON 5TH JANU | ARY 19 | TO COOLER<br>116 AND THEN<br>10M ON 20TH<br>V KEPT FOR<br>CARY 1916 | COO<br>SHI<br>FER | NO. 4 REPT IN<br>H DECEMBER 1<br>LER ROOM ON 5T<br>FTED BACK TO C<br>RUARY 1916 AND<br>F FEBRUARY 1916 | 015, S<br>H JANU<br>OOL RO<br>D TAKE | CARY 1916,<br>OM ON 7TH | 0X | NO. 5 KEPT<br>TH DECEMBER IN<br>21ST FEBRUARY<br>R INCUBATING | 015 AND | D TAKEN OUT | |------------|--------------------------------------------------|----------------------------|---------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------| | | Duration of hatching | Number of hatched<br>worms | REMARKS | Number of layings | Duration of hatching | Number of hatched<br>worms | Benarrs | Number of hayings | Duration of hatching | Number of hatched<br>worms | Rekars | | | st Febru-<br>ary 1916 to<br>5th March<br>1916 | 28 | Many em-<br>bryos were<br>injured | ± | 12th March<br>1916 to 27th<br>March 1916 | 2 | Most of the<br>embryos were<br>injured in<br>the cold stor-<br>age | | | | The ergs were<br>missing | | 1 | ith Febru-<br>ary 1916 to<br>24th March<br>1916 | 446 | Some em-<br>bryos were<br>injured | 4 | 5th March<br>1916 to 3rd<br>April 1916 | 810 | Some em-<br>bryos were<br>injured in<br>the cold<br>storage | 1 | 7th March<br>1916 to 17th<br>March 1916 | 180 | Few embryos<br>were injured<br>in the cold<br>storage | | : | sth Febru-<br>ary 1916 to<br>5th March<br>1916 | 330 | Do. | 2 | 5th March<br>1916 to 12th<br>March 1916 | 470 | Few embryos<br>were injured<br>in the cold<br>storage | 4 | 3rd March<br>1916 to 9th<br>March 1916 | 1435 | The hatching<br>was satisfac-<br>tory | | | ird March<br>1916 to 21st<br>March 1916 | 185 | Some em-<br>bryos were<br>injured in<br>the cold<br>storage | 1 | 7th March<br>1916 to 21st<br>March 1916 | 242 | Very few em-<br>bryos were<br>injured | 3 | 3rd March<br>1916 to 14th<br>March 1916 | 233 | Many embryos<br>were injured | | 1 | Elst Febru-<br>ary 1916 to<br>7th March<br>1916 | 231 | Few embryes<br>were injured<br>in the cold<br>storage | 1 | 5th March<br>1916 to 12th<br>March 1916 | 260 | Do. | 1 | 28th Febru-<br>ary 1916 to<br>9th March<br>1916 | 286 | Few embryos<br>were injured | | * | 26th Febru-<br>ary 1916 to<br>7th March<br>1916 | 345 | Do. | 4 | 5th March<br>1916 to 9th<br>March 1916 | 729 | 1 laying did<br>not hatch<br>at all. The<br>embryos of<br>the rest were<br>in good con-<br>dition | 1 | 5th March<br>1916 to 9th<br>March 1916 | 91 | Many embryos<br>were injured | | 3 | 18th Febru-<br>ary 1916 to<br>14th March<br>1916 | | Some eggs<br>were injured<br>in cold<br>storage | | 12th March<br>1916 to 17th<br>March 1916 | 442 | Few embryos<br>were injured<br>in the cold<br>storage | 4 | 7th Match<br>1916 to 12th<br>March 1916 | 545 | Some eggs did<br>not hatch | | 2 | 9th Febru-<br>ary 1916 to<br>12th March<br>1916 | | Few eggs<br>were injured<br>in the cold<br>storage | | 5th March<br>1916 to 12th<br>March 1916 | 547 | Do. | 1 | 3rd March<br>1916 to 9fh<br>March 1916 | 322 | All hatched | | ā | | ni | | 3 | •• | nil | All the embryos were injured | 10 | ** . | | About half the<br>eggs hatched<br>in the cold<br>storage. The<br>rest dried up<br>Many broke<br>the egg-shells<br>but could not<br>come out | Thus it has been seen that the period of cold storage can be shortened if the cold is more intense in the hibernating room but many of the embryos are injured and the hatching isnon-uniform and quite unsatisfactory. When the eggs were taken out from the intense cold they seemed to be in good condition but after two to three months slight depressions were visible on the eggs, which later on dried up. The hatching of the eggs, stored in the cool room (where the temperature varied from 30° to 60°F.), was more uniform than in the case of the eggs kept in the cooler room (where the temperature varied from 11° to 30° F.). Eggs properly kept in cold storage should hatch uniformly in a climate like that of Pusa on the 12th or 13th day after taking out of cold storage (vide Bulletin No. 48); but some of the eggs, sent to the cooler room, hatched irregularly two to three months after taking out of the cold storage and the rest dried up. The eggs of Boropolu and Japanese races and their hybrids with multivoltine races hatch more uniformly than the eggs laid by other univoltine races under the same conditions. It has been seen further that the air of hibernating room should be pure and dry. Moist air prevents the exhalation of water vapour from the embryos and thus injures them; very dry air also is injurious to the embryos. The results also prove that Eri eggs (it should be noted that Eri silkworm is multivoltine) cannot stand a very low temperature and they fail to hatch if they are kept in cold. Variations of temperature in hibernating rooms weaken the embryos and the worms which come out are feeble. In the worst cases they fail to hatch and die inside the eggs. It should be noted that the eggs of multivoltine races are not sent for cold storage as they hatch naturally on the 10th to 15th day after oviposition. The hatching may be deferred by keeping them in a low temperature for a few weeks. (Vide First Report, page 19.) Eggs of the above nine univoltine races (not Eri eggs) were also sent to Shillong and Muktesar where they were kept at a temperature varying from 50° to 30° F. These were sent in October and taken out in February for incubating; almost all the eggs hatched uniformly and regularly in four days on the 12th or 13th day after taking out of the cold storage; few embryos were injured and the hatching was quite satisfactory. It has been shown in the First Report that the eggs sent for cold storage to an ice factory, where the temperature varied from 35° to 45° F., hatched satisfactorily in three or four days. In the silk-rearing districts of Japan, there are peculiar contrivances erected on the Hills known as Fu-Ketsu (wind-holes). A small cave is excavated on a hill on a side opposite to that from which wind blows; the walls and the ceiling of the cave are filled up with saw dust or other non-conductors of heat. In these caves the temperature is always about 35° to 45° F. when the outside temperature in summer and autumn varies from 45° to 95° F. Eggs are kept in such cold caves for hibernation and taken out in summer and autumn for incubating so that univoltine races can be reared any number of times in a year simply by deferring the hatching. The prosperity of the silk industry in Japan is primarily due to the use of such cold caves. Such caves may perhaps be constructed in the Hills of Upper Shillong and Naini Tal. Suitable cold rooms can also be made in those places where there are ice factories. TABLE XII. Maximum and minimum temperatures of the cool and cooler rooms. | | | D.11 | | | Coot | ROOM | Cooler | ROOM | |--------------|-------|---------|---|---|---------|---------|---------|---------| | | ] | Dâte | | | Maximum | Minimum | Maximum | Minimum | | | | | | | ° F. | ° F. | ° F. | ° F. | | Oth Da | cem! | er 1915 | | | 59 | 48 | 30 | 19 | | 21st | | | • | • | 53 | 49 | | 18 | | 22nd | ,, | " | • | • | 53 | 49 | 27 | 11 | | 22nu<br>23rd | ,, | ** | • | : | 24 | 47 | 25 | 12 | | zara<br>24th | ** | ** | • | • | 54 | 49 | 28 | 12 | | | ,, | ** | • | • | 1 | *** | | | | 25th | " | " | ٠ | | 58 | 47 | 31 | 14 | | 26th | " | ** | • | • | 57 | 45 | 28 | 15 | | 27th | ,, | 71 | • | ٠ | | | 20 | | | 28th | ,, | ,, | • | | | 45 | 30 | 15 | | 29th | 22 | ,, | • | | 60 | 40 | au . | | | 30th | ,, | " | • | | | 17- | 30 | 13 | | 31st | ,, | , ,, | | | 60 | 45 | 30 | | | 1st Ja | ınuar | y 1916 | | | • • • • | **. | | 13 | | 2nd | ,, | ,, | | | 60 | 54 | 30 | | | 3rd | ** | 19 | | | 56 | 50 | 28 | 12 | | 4th | ,, | ,, | | | . 52 | 48 | 27 | 13 | | 5th | ,, | ,, | | | 52 | 48 | 28 | 12 | | 6th | " | ,, | | | 52 | 48 | 27 | 13 | | 7th | " | " | | | 55 | 52 | 26 | 12 | | 8th | " | ,, | | | 52 | 45 | 27 | 14 | | 9th | " | " | Ċ | | | | | **. | | 10th | ., | ,, | • | | 60 | 47 | 30 | 14 | | 11th | | | | | 52 | 45 | 27 | 15 | | 12th | 17 | " | | • | 52 | 45 | 27 | 1.7 | | 13th | " | " | • | • | 52 | 45 | 25 | 14 | | 14th | ,, | " | • | | 52 | 45 | 26 - | 11 | | 14th | ,, | " | • | • | 52 | 45 | 24 | 13 | | | " | ** | • | | | 10 | | | | 16th | ** | ,, | • | | 56 | 45 | 30 | 15 | | 17th | ** | ** | | | | 1 | | | | 18th | " | ,, | ٠ | | 56 | 45 | 25 | 13 | | 19th | ** | " | • | | . 56 | 44 | 24 | 15 | | 20th | ** | " | ٠ | | . 54 | 42 | 25 | 12 | | 21st | 17 | ,, | • | | | 45 | 25 | 11 | | 22nd | ,, | ** | | | . 1 52 | 1 | | | | 23rd | ,, | 99 | | | | 45 | 28 | 11 | | 24th | ,, | ,, | | | . 56 | 47 | 27 | 13 | | 25 th | ,, | ,, | ٠ | | . 52 | 50 | 30 | 11 | | 26tb | ** | ,, | | | . 60 | | 30 | 13 | | 27th | ,, | ,, | | | . 54 | 45 | 27 | 1 13 | | 28th | ,, | ,, | | | . 52 | 45 | 41 | 1 | TABLE XII-concld. | Da | .+. | | | Coor | ROOM | Cooli | ER ROOM | |---------------|------|---|---|--------------|---------|---------|--------------| | De | · M. | | | Maximum | Minimum | Maximum | Minimum | | | | | | ° <b>F</b> . | °F. | °F. | ° <b>F</b> . | | 9th January 1 | 1916 | | | 52 | 45 | 26 | 13 | | | ,, | • | • | | •• | •• | | | lst " | ,, | ٠ | ٠ | 50 | 46 . | 30 | 15 | | 1st February | 1916 | | ٠ | 52 | 45 | 27 | 14 | | 2nd ,, | " | | • | 52 | 45 | 27 | 13 | | 3rd " | ,, | | | 52 | 4.5 | 25 | 11 | | 4th " | ** | | ٠ | 52 | 45 | 27 | 13 | | 5th ,, | ,, | | | 52 | 42 | 26 | 12 | | 6th ,, | ,, | | | 56 | 54 | 26 | • 24 | | 7th ,, | ** | | | 56 | 45 | 28 | 15 | | 8th ,, | ,, | | | 52 | 45 | 27 | 17 | | 9th ,, | ,, | | | 52 | 45 | 27 | 13 | | 0th ,, | ,, | | | 52 | 45 | 27 | 14 | | lth " | ,, | | | 52 | 45 | 25 | 14 | | 2th ,, | ,, | | | 50 | 45 | 27 | 13 | | 3th ,, | ,, | | | 54 | 52 | 28 | 24 | | 4th ,, | ,, | | | 58 | 45 | 30 | 15 | | 5th ,, | ,, | | | 52 | 45 | 28 | 16 | | 6th ,, | " | | | 52 | 45 | 27 | 13 | | 7th ,, | 19 | | | 52 | 45 | 27 | 13 | | 8նե ,, | ,, | | | 52 | 4.5 | 27 | 14 | | 9th ,, | ,, | , | | 52 | 4.5 | 27 | 13 | | 0th ,, | ,, | | | 55 | 49 | 26 | 24 | #### Conclusions. - 1. Success has been attained in establishing multivoltine hybrid races which will yield better cocoons than the pure multivoltine races generally reared in Bengal, Assam and Mysore. A few eggs from each laying turn univoltine but they should be destroyed and multivoltine eggs should be reared. The loss of these eggs can be ignored considering the advantages gained. About 700, 800, 900, 1,050, 1,100, 1,300, 1,350 and 1,900 raw cocoons of univoltine race, Pusa hybrid No. 1, Pusa hybrid No. 2, Mysore race, Boropolu, Nistari, Chotopolu and Assam race, respectively, weigh 2lb. We recommend to rear Pusa hybrid Nos. 1 and 2 (Multivoltine varieties) in preference to any other varieties from October to April and from May to September respectively. Small quantities of these eggs will be available for distribution from the Imperial Entomologist, Pusa, Bihar if they can be spared when requisition is made for them. - All races yield more silk if fed with suitable tree mulberry leaves than when fed with bush leaves. Tree mulberry hould be introduced in all localities in addition to bush. - 3. Of all the indigenous races, the Mysore race is the best as far as the yield of silk is concerned. The Nistari race should be reared in April or May, the Mysore race and hybrid races from July to October and univoltine races from October to March. 4. Of all the univoltine races, Chinese and Japanese races thrive best in a climate like that of Pusa but their yield of silk is inferior to those of France and Italy. The cross-breds between Boropolu and foreign univoltine races should be reared in those places where imported foreign races do not thrive well. 5. Univoltine eggs should be hibernated for about 4 or 5 months at about 35° to 45° F. The duration of cold storage can be shortened by the action of intense cold but the hatching of the eggs is quite unsatisfactory. 6. Eggs laid by moths which are attacked with flacherie can be used for industrial purposes. 7. Univoltine races are more susceptible to pebrine than multivoltine ones in a climate like that of Pusa. Pebrine appears more in May to October than in September to April. The more pebrinized layings are reared with healthy layings the less the number of cocoons are obtained from a rearing. The percentage of diseased moths is more or less in proportion to the pebrinized layings reared with healthy layings. Good crops and healthy layings can be obtained from a pebrinized laying if the worms are carefully attended to and if the temperature and moisture-content in the air are suitable for the healthy growth of the worms. Bad crops and pebrinized layings are obtained from a healthy laying if the temperature and moisture-content are high and if the worms are not properly looked after. 8. Multivoltine races cannot be improved by dipping the eggs in dilute hydrochloric acid. 9. Morus alba var. japanica and Morus alba var. philippinensis are the best foodstuffs for both univoltine and multivoltine races. There is practically no difference between the male and female varieties of mulberry which have been cultivated at Pusa. ## CALCUTTA SUPERINTENDENT GOVERNMENT PRINTING, INDIA 8, HASTINGS STREET